Watchy/src/Display.cpp

503 lines
15 KiB
C++

// Display Library for SPI e-paper panels from Dalian Good Display and boards from Waveshare.
// Requires HW SPI and Adafruit_GFX. Caution: the e-paper panels require 3.3V supply AND data lines!
//
// based on Demo Example from Good Display, available here: http://www.e-paper-display.com/download_detail/downloadsId=806.html
// Panel: GDEH0154D67 : http://www.e-paper-display.com/products_detail/productId=455.html
// Controller : SSD1681 : http://www.e-paper-display.com/download_detail/downloadsId=825.html
//
// Author: Jean-Marc Zingg
//
// Version: see library.properties
//
// Library: https://github.com/ZinggJM/GxEPD2
//
// The original code from the author has been slightly modified to improve the performance for Watchy Project:
// Link: https://github.com/sqfmi/Watchy
#include "Display.h"
#include "config.h"
RTC_DATA_ATTR bool displayFullInit = true;
void WatchyDisplay::busyCallback(const void *) {
gpio_wakeup_enable((gpio_num_t)DISPLAY_BUSY, GPIO_INTR_LOW_LEVEL);
esp_sleep_enable_gpio_wakeup();
esp_light_sleep_start();
}
WatchyDisplay::WatchyDisplay() :
GxEPD2_EPD(DISPLAY_CS, DISPLAY_DC, DISPLAY_RES, DISPLAY_BUSY, HIGH, 10000000, WIDTH, HEIGHT, panel, hasColor, hasPartialUpdate, hasFastPartialUpdate)
{
// Setup callback and SPI by default
selectSPI(SPI, SPISettings(20000000, MSBFIRST, SPI_MODE0));
setBusyCallback(busyCallback);
}
void WatchyDisplay::initWatchy() {
// Watchy default initialization
init(0, displayFullInit, 2, true);
}
void WatchyDisplay::asyncPowerOn() {
// This is expensive if unused
if (!waitingPowerOn && !_hibernating) {
_InitDisplay();
_PowerOnAsync();
}
}
void WatchyDisplay::setDarkBorder(bool dark) {
if (_hibernating) return;
darkBorder = dark;
_startTransfer();
_transferCommand(0x3C); // BorderWavefrom
_transfer(dark ? 0x02 : 0x05);
_endTransfer();
}
void WatchyDisplay::clearScreen(uint8_t value)
{
writeScreenBuffer(value);
refresh(true);
writeScreenBufferAgain(value);
}
void WatchyDisplay::writeScreenBuffer(uint8_t value)
{
if (!_using_partial_mode) _Init_Part();
if (_initial_write) _writeScreenBuffer(0x26, value); // set previous
_writeScreenBuffer(0x24, value); // set current
_initial_write = false; // initial full screen buffer clean done
}
void WatchyDisplay::writeScreenBufferAgain(uint8_t value)
{
if (!_using_partial_mode) _Init_Part();
_writeScreenBuffer(0x24, value); // set current
}
void WatchyDisplay::_writeScreenBuffer(uint8_t command, uint8_t value)
{
_startTransfer();
_transferCommand(command);
for (uint32_t i = 0; i < uint32_t(WIDTH) * uint32_t(HEIGHT) / 8; i++)
{
_transfer(value);
}
_endTransfer();
}
void WatchyDisplay::writeImage(const uint8_t bitmap[], int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
_writeImage(0x24, bitmap, x, y, w, h, invert, mirror_y, pgm);
}
void WatchyDisplay::writeImageForFullRefresh(const uint8_t bitmap[], int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
_writeImage(0x26, bitmap, x, y, w, h, invert, mirror_y, pgm);
_writeImage(0x24, bitmap, x, y, w, h, invert, mirror_y, pgm);
}
void WatchyDisplay::writeImageAgain(const uint8_t bitmap[], int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
_writeImage(0x24, bitmap, x, y, w, h, invert, mirror_y, pgm);
}
void WatchyDisplay::_writeImage(uint8_t command, const uint8_t bitmap[], int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
if (_initial_write) writeScreenBuffer(); // initial full screen buffer clean
#if defined(ESP8266) || defined(ESP32)
yield(); // avoid wdt
#endif
int16_t wb = (w + 7) / 8; // width bytes, bitmaps are padded
x -= x % 8; // byte boundary
w = wb * 8; // byte boundary
int16_t x1 = x < 0 ? 0 : x; // limit
int16_t y1 = y < 0 ? 0 : y; // limit
int16_t w1 = x + w < int16_t(WIDTH) ? w : int16_t(WIDTH) - x; // limit
int16_t h1 = y + h < int16_t(HEIGHT) ? h : int16_t(HEIGHT) - y; // limit
int16_t dx = x1 - x;
int16_t dy = y1 - y;
w1 -= dx;
h1 -= dy;
if ((w1 <= 0) || (h1 <= 0)) return;
if (!_using_partial_mode) _Init_Part();
_setPartialRamArea(x1, y1, w1, h1);
_startTransfer();
_transferCommand(command);
for (int16_t i = 0; i < h1; i++)
{
for (int16_t j = 0; j < w1 / 8; j++)
{
uint8_t data;
// use wb, h of bitmap for index!
int16_t idx = mirror_y ? j + dx / 8 + ((h - 1 - (i + dy))) * wb : j + dx / 8 + (i + dy) * wb;
if (pgm)
{
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
data = pgm_read_byte(&bitmap[idx]);
#else
data = bitmap[idx];
#endif
}
else
{
data = bitmap[idx];
}
if (invert) data = ~data;
_transfer(data);
}
}
_endTransfer();
#if defined(ESP8266) || defined(ESP32)
yield(); // avoid wdt
#endif
}
void WatchyDisplay::writeImagePart(const uint8_t bitmap[], int16_t x_part, int16_t y_part, int16_t w_bitmap, int16_t h_bitmap,
int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
_writeImagePart(0x24, bitmap, x_part, y_part, w_bitmap, h_bitmap, x, y, w, h, invert, mirror_y, pgm);
}
void WatchyDisplay::writeImagePartAgain(const uint8_t bitmap[], int16_t x_part, int16_t y_part, int16_t w_bitmap, int16_t h_bitmap,
int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
_writeImagePart(0x24, bitmap, x_part, y_part, w_bitmap, h_bitmap, x, y, w, h, invert, mirror_y, pgm);
}
void WatchyDisplay::_writeImagePart(uint8_t command, const uint8_t bitmap[], int16_t x_part, int16_t y_part, int16_t w_bitmap, int16_t h_bitmap,
int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
if (_initial_write) writeScreenBuffer(); // initial full screen buffer clean
#if defined(ESP8266) || defined(ESP32)
yield(); // avoid wdt
#endif
if ((w_bitmap < 0) || (h_bitmap < 0) || (w < 0) || (h < 0)) return;
if ((x_part < 0) || (x_part >= w_bitmap)) return;
if ((y_part < 0) || (y_part >= h_bitmap)) return;
int16_t wb_bitmap = (w_bitmap + 7) / 8; // width bytes, bitmaps are padded
x_part -= x_part % 8; // byte boundary
w = w_bitmap - x_part < w ? w_bitmap - x_part : w; // limit
h = h_bitmap - y_part < h ? h_bitmap - y_part : h; // limit
x -= x % 8; // byte boundary
w = 8 * ((w + 7) / 8); // byte boundary, bitmaps are padded
int16_t x1 = x < 0 ? 0 : x; // limit
int16_t y1 = y < 0 ? 0 : y; // limit
int16_t w1 = x + w < int16_t(WIDTH) ? w : int16_t(WIDTH) - x; // limit
int16_t h1 = y + h < int16_t(HEIGHT) ? h : int16_t(HEIGHT) - y; // limit
int16_t dx = x1 - x;
int16_t dy = y1 - y;
w1 -= dx;
h1 -= dy;
if ((w1 <= 0) || (h1 <= 0)) return;
if (!_using_partial_mode) _Init_Part();
_setPartialRamArea(x1, y1, w1, h1);
_startTransfer();
_transferCommand(command);
for (int16_t i = 0; i < h1; i++)
{
for (int16_t j = 0; j < w1 / 8; j++)
{
uint8_t data;
// use wb_bitmap, h_bitmap of bitmap for index!
int16_t idx = mirror_y ? x_part / 8 + j + dx / 8 + ((h_bitmap - 1 - (y_part + i + dy))) * wb_bitmap : x_part / 8 + j + dx / 8 + (y_part + i + dy) * wb_bitmap;
if (pgm)
{
#if defined(__AVR) || defined(ESP8266) || defined(ESP32)
data = pgm_read_byte(&bitmap[idx]);
#else
data = bitmap[idx];
#endif
}
else
{
data = bitmap[idx];
}
if (invert) data = ~data;
_transfer(data);
}
}
_endTransfer();
#if defined(ESP8266) || defined(ESP32)
yield(); // avoid wdt
#endif
}
void WatchyDisplay::writeImage(const uint8_t* black, const uint8_t* color, int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
if (black)
{
writeImage(black, x, y, w, h, invert, mirror_y, pgm);
}
}
void WatchyDisplay::writeImagePart(const uint8_t* black, const uint8_t* color, int16_t x_part, int16_t y_part, int16_t w_bitmap, int16_t h_bitmap,
int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
if (black)
{
writeImagePart(black, x_part, y_part, w_bitmap, h_bitmap, x, y, w, h, invert, mirror_y, pgm);
}
}
void WatchyDisplay::writeNative(const uint8_t* data1, const uint8_t* data2, int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
if (data1)
{
writeImage(data1, x, y, w, h, invert, mirror_y, pgm);
}
}
void WatchyDisplay::drawImage(const uint8_t bitmap[], int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
writeImage(bitmap, x, y, w, h, invert, mirror_y, pgm);
refresh(x, y, w, h);
writeImageAgain(bitmap, x, y, w, h, invert, mirror_y, pgm);
}
void WatchyDisplay::drawImagePart(const uint8_t bitmap[], int16_t x_part, int16_t y_part, int16_t w_bitmap, int16_t h_bitmap,
int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
writeImagePart(bitmap, x_part, y_part, w_bitmap, h_bitmap, x, y, w, h, invert, mirror_y, pgm);
refresh(x, y, w, h);
writeImagePartAgain(bitmap, x_part, y_part, w_bitmap, h_bitmap, x, y, w, h, invert, mirror_y, pgm);
}
void WatchyDisplay::drawImage(const uint8_t* black, const uint8_t* color, int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
if (black)
{
drawImage(black, x, y, w, h, invert, mirror_y, pgm);
}
}
void WatchyDisplay::drawImagePart(const uint8_t* black, const uint8_t* color, int16_t x_part, int16_t y_part, int16_t w_bitmap, int16_t h_bitmap,
int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
if (black)
{
drawImagePart(black, x_part, y_part, w_bitmap, h_bitmap, x, y, w, h, invert, mirror_y, pgm);
}
}
void WatchyDisplay::drawNative(const uint8_t* data1, const uint8_t* data2, int16_t x, int16_t y, int16_t w, int16_t h, bool invert, bool mirror_y, bool pgm)
{
if (data1)
{
drawImage(data1, x, y, w, h, invert, mirror_y, pgm);
}
}
void WatchyDisplay::refresh(bool partial_update_mode)
{
if (partial_update_mode) refresh(0, 0, WIDTH, HEIGHT);
else
{
if (_using_partial_mode) _Init_Full();
_Update_Full();
_initial_refresh = false; // initial full update done
}
}
void WatchyDisplay::refresh(int16_t x, int16_t y, int16_t w, int16_t h)
{
if (_initial_refresh) return refresh(false); // initial update needs be full update
// intersection with screen
int16_t w1 = x < 0 ? w + x : w; // reduce
int16_t h1 = y < 0 ? h + y : h; // reduce
int16_t x1 = x < 0 ? 0 : x; // limit
int16_t y1 = y < 0 ? 0 : y; // limit
w1 = x1 + w1 < int16_t(WIDTH) ? w1 : int16_t(WIDTH) - x1; // limit
h1 = y1 + h1 < int16_t(HEIGHT) ? h1 : int16_t(HEIGHT) - y1; // limit
if ((w1 <= 0) || (h1 <= 0)) return;
// make x1, w1 multiple of 8
w1 += x1 % 8;
if (w1 % 8 > 0) w1 += 8 - w1 % 8;
x1 -= x1 % 8;
if (!_using_partial_mode) _Init_Part();
_setPartialRamArea(x1, y1, w1, h1);
_Update_Part();
}
void WatchyDisplay::powerOff()
{
_PowerOff();
}
void WatchyDisplay::hibernate()
{
//_PowerOff(); // Not needed before entering deep sleep
if (_rst >= 0)
{
_writeCommand(0x10); // deep sleep mode
_writeData(0x1); // enter deep sleep
_hibernating = true;
}
}
void WatchyDisplay::_setPartialRamArea(uint16_t x, uint16_t y, uint16_t w, uint16_t h)
{
_startTransfer();
_transferCommand(0x11); // set ram entry mode
_transfer(0x03); // x increase, y increase : normal mode
_transferCommand(0x44);
_transfer(x / 8);
_transfer((x + w - 1) / 8);
_transferCommand(0x45);
_transfer(y % 256);
_transfer(y / 256);
_transfer((y + h - 1) % 256);
_transfer((y + h - 1) / 256);
_transferCommand(0x4e);
_transfer(x / 8);
_transferCommand(0x4f);
_transfer(y % 256);
_transfer(y / 256);
_endTransfer();
}
void WatchyDisplay::_PowerOnAsync()
{
if (_power_is_on)
return;
_startTransfer();
_transferCommand(0x22);
_transfer(0xf8);
_transferCommand(0x20);
_endTransfer();
waitingPowerOn = true;
_power_is_on = true;
}
void WatchyDisplay::_PowerOn()
{
if (waitingPowerOn)
{
waitingPowerOn = false;
_waitWhileBusy("_PowerOn", power_on_time);
}
if (_power_is_on)
return;
_startTransfer();
_transferCommand(0x22);
_transfer(0xf8);
_transferCommand(0x20);
_endTransfer();
_waitWhileBusy("_PowerOn", power_on_time);
_power_is_on = true;
}
void WatchyDisplay::_PowerOff()
{
if (waitingPowerOn)
{
waitingPowerOn = false;
_waitWhileBusy("_PowerOn", power_on_time);
}
if (!_power_is_on)
return;
_startTransfer();
_transferCommand(0x22);
_transfer(0x83);
_transferCommand(0x20);
_endTransfer();
_waitWhileBusy("_PowerOff", power_off_time);
_power_is_on = false;
_using_partial_mode = false;
}
void WatchyDisplay::_InitDisplay()
{
if (_hibernating) _reset();
// No need to soft reset, the Display goes to same state after hard reset
// _writeCommand(0x12); // soft reset
// _waitWhileBusy("_SoftReset", 10); // 10ms max according to specs*/
_startTransfer();
_transferCommand(0x01); // Driver output control
_transfer(0xC7);
_transfer(0x00);
_transfer(0x00);
if (reduceBoosterTime) {
// SSD1675B controller datasheet
_transferCommand(0x0C); // BOOSTER_SOFT_START_CONTROL
// Set the driving strength of GDR for all phases to maximun 0b111 -> 0xF
// Set the minimum off time of GDR to minimum 0x4 (values below sould be same)
_transfer(0xF4); // Phase1 Default value 0x8B
_transfer(0xF4); // Phase2 Default value 0x9C
_transfer(0xF4); // Phase3 Default value 0x96
_transfer(0x00); // Duration of phases, Default 0xF = 0b00 11 11 (40ms Phase 1/2, 10ms Phase 3)
}
_transferCommand(0x18); // Read built-in temperature sensor
_transfer(0x80);
_endTransfer();
setDarkBorder(darkBorder);
_setPartialRamArea(0, 0, WIDTH, HEIGHT);
}
void WatchyDisplay::_reset()
{
// Call default method if not configured the same way
if (_rst < 0 || !_pulldown_rst_mode) {
GxEPD2_EPD::_reset();
return;
}
digitalWrite(_rst, LOW);
pinMode(_rst, OUTPUT);
delay(_reset_duration);
pinMode(_rst, INPUT_PULLUP);
// Tested calling _powerOn() inmediately, and works ok, no need to sleep
// delay(_reset_duration > 10 ? _reset_duration : 0);
_hibernating = false;
}
void WatchyDisplay::_Init_Full()
{
_InitDisplay();
_PowerOn();
_using_partial_mode = false;
}
void WatchyDisplay::_Init_Part()
{
_InitDisplay();
_PowerOn();
_using_partial_mode = true;
}
void WatchyDisplay::_Update_Full()
{
_startTransfer();
_transferCommand(0x22);
_transfer(0xf4);
_transferCommand(0x20);
_endTransfer();
_waitWhileBusy("_Update_Full", full_refresh_time);
displayFullInit = false;
}
void WatchyDisplay::_Update_Part()
{
_startTransfer();
_transferCommand(0x22);
//_transfer(0xcc); // skip temperature load (-5ms)
_transfer(0xfc);
_transferCommand(0x20);
_endTransfer();
_waitWhileBusy("_Update_Part", partial_refresh_time);
}
void WatchyDisplay::_transferCommand(uint8_t value)
{
if (_dc >= 0) digitalWrite(_dc, LOW);
SPI.transfer(value);
if (_dc >= 0) digitalWrite(_dc, HIGH);
}